Right Triangle Trigonometry (Part 2)

This material is based on work supported by the National Science Foundation under Grant No
 conclusions or recommendations expressed in
this material are those of the author(s) and do this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

Trigonometric Ratios

- We are now going to learn how to find missing sides and angles of right triangles. There are many times when not all things are square - making 90 degree angles everywhere. When this is the case, we often need to use trigonometry to find dimensions needed or the angle something needs to set or cut.
- Skip to the last few problems here to see some images of examples of where you would need to use trigonometry to find a missing angle or dimension before we get a solid base of how to solve these ratios.

Trigonometric Ratios

, The sine (pronounced "sign") ratio for some angle, A, is

$$
\sin A=\frac{\text { opposite side }}{\text { hypotenuse }}
$$

, The cosine (pronounced "co-sign") ratio for some angle, A , is

$$
\cos \mathrm{A}=\frac{\text { adjacent side }}{\text { hypotenuse }}
$$

- The tangent ratio for some angle, A , is

$$
\tan A=\frac{\text { opposite side }}{\text { adjacent side }}
$$

${ }^{* * *}$ Notice, each equation uses one angle and two sides.
**We will always use degrees for the angle, so be sure your calculator is in degree mode.

Objectives

- Sine, Cosine, and Tangent Ratios
- Solving Triangles - unknown on top
- Solving Triangles - unknown on bottom
- Solving Triangles - angle unknown
- Application Problems

Trigonometric Ratios

To use the ratios, we need to know which side is the opposite side and which is the adjacent side for a specified angle.
, Example: Label the sides opposite, adjacent, and hypotenuse for each triangle for angle A.

Try Yourself - Verify your triangle

Solving Triangles

- Typically, we use the trig ratios to find missing parts of triangles, dimensions or angles

Situation 1 - unknown side on top
Situation 2 - unknown side on bottom
Situation 3 - angle unknown

- We will use all three trig ratios, (sin,cos,tan) depending on which one works easiest
- Always estimate what you answer should be first to be sure you used the correct ratio and set up the equation correctly

Situation 1 - unknown on top

- Example: Find x : (Round to the nearest $16^{\text {th }}$ of an inch.)

Try Yourself

1) Find a :

Try Yourself

- 2) Find x :

Solving for unknowns on bottom

- Is this true? $2=\frac{12}{6}$
- How do you determine 6 is correct in that spot?
- Ex: Find $\mathrm{x}: 4=\frac{20}{\mathrm{x}}$
, Ex: Find $\mathrm{x}: 9=\frac{18}{\mathrm{x}}$
- Ex: Find $\mathrm{x}: 11.32=\frac{57.91}{\mathrm{x}}$
, Ex: Find $x: 0.792=\frac{15}{x}$

Situation 2 - unknown on bottom
, Example: Find x :

Try Yourself

1) Find x : (Round to the nearest $16^{\text {th }}$ of an inch.)

Try Yourself

1) Find $x: 6=\frac{42}{x}$

- 2) Find $x: 0.707=\frac{9.625}{x}$

Situation 2 - unknown on bottom

Example: Find c: (Round to the closest foot and half inch.)

Try Yourself

2) Find x : (Round to the nearest $16^{\text {th }}$ of an inch.)

Finding Missing Sides and Angle Given an Angle and Side

Example: Find c, y, and A: (Round to the nearest tenth of a mm and tenth of a degree.)

Finding Angles

In order to find a missing angle, we need to use the inverse trig functions on our calculators. For most calculators, you hit $2^{\text {nd }}$, then the trig function, then enter the value equal to the trig function of the angle.

Example: Find $A: \quad \sin A=0.357$

Try Yourself

1) Find A to the nearest tenth of a degree: $\sin A=0.95$
, 2) Find A in degrees and the nearest minute: $\cos \mathrm{A}=0.33$

Try Yourself

Example: Find the missing angles and sides: (Round to the nearest tenth of a degree and hundredth of a foot.)

Finding Angles

, Examples: Find the angle to the nearest tenth of a degree. $\sin B=0.5$
$\cos \mathrm{A}=0.087$
$\tan B=0.75$
$\tan \mathrm{B}=1.8$
$\sin \mathrm{A}=1.8$
$\cos \mathrm{A}=1.8$
Again, look at patterns on Trig Table: http://www.classzone.com/cz/books /pre alg/resources/pdfs/formulas an d_tables/palg_table_of_trig_ratios.pdf

Situation 3 - angle unknown

Example: Find A. (Round to the nearest tenth of a degree.)

Situation 3 - angle unknown

, Example: Find B. (Round to the nearest tenth of a degree.)

Try Yourself

Finding the Missing Side and Angles

 Given Two Sides, Example: Find A, B, and x. (Round to the nearest tenth of a degree and $16^{\text {th }}$ of a inch.)

Try Yourself

- Example: Find the missing angles and sides: (Round to the nearest tenth of a degree and hundredth of a foot.)

Application Problems

- The following is a skewed T-Joint that you need to prepare. Find the angles the bar needs to be cut to place correctly to fit this corner and the length of the inside of

Try Yourself

- 2) At what angle, A, shown below should the support for the T-joint be cut?

Try Yourself

1) Determine the missing dimension in the dovetail joint below.

Application Problems

For some additional application problems:
https://www.wisc-
online.com/Objects/ViewObject.aspx?ID=MSR3603

