Right Triangle Trigonometry (Part 2)

This material is based on work supported by the National Science Foundation under Grant No. DUE-1406857. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Objectives

- Sine, Cosine, and Tangent Ratios
- Solving Triangles unknown on top
- Solving Triangles unknown on bottom
- Solving Triangles angle unknown
- **Application Problems**

Trigonometric Ratios

Northeast

- We are now going to learn how to find missing sides and angles of right triangles. There are many times when not all things are square - making 90 degree angles everywhere. When this is the case, we often need to use trigonometry to find dimensions needed or the angle something needs to set or cut.
- Skip to the last few problems here to see some images of examples of where you would need to use trigonometry to find a missing angle or dimension before we get a solid base of how to solve these ratios.

Trigonometric Ratios

- To use the ratios, we need to know which side is the opposite side and which is the adjacent side for a specified angle.
- Example: Label the sides opposite, adjacent, and hypotenuse for each triangle for angle A.

Trigonometric Ratios

The sine (pronounced "sign") ratio for some angle, A, is $sin A = \frac{opposite side}{barrier}$

hypotenuse

The cosine (pronounced "co-sign") ratio for some angle, A, is adjacent side

cos A= hypotenuse

> The tangent ratio for some angle, A, is

tan A=<u>opposite side</u> adjacent side

***Notice, each equation uses one angle and two sides. **We will always use degrees for the angle, so be sure your calculator is in degree mode.

Finding Missing Sides and Angle Given an Angle and Side

Finding Angles

- In order to find a missing angle, we need to use the inverse trig functions on our calculators. For most calculators, you hit 2nd, then the trig function, then enter the value equal to the trig function of the angle.
- Example: Find A: sin A= 0.357

Try Yourself

- 1) Find A to the nearest tenth of a degree: sin A = 0.95
- 2) Find A in degrees and the nearest minute: cos A = 0.33

Application Problems

> A bolt-hole circle has 8 holes evenly spaced. The radius is 5 ¾". Find the distance between two holes.

Try Yourself

> 2) At what angle, A, shown below should the support for the T-joint be cut?

Application Problems

For some additional application problems: <u>https://www.wisc-online.com/Objects/ViewObject.aspx?ID=MSR3603</u>