Right Triangle Trigonometry (Part 1)

This material is based on work supported by the National Science Foundation under Grant No. DUE-1406857. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

💌 Northeast

Objectives

- Types of Angles
- Converting Angle Units
- Adding/Subtracting Angle Units
- Arc Length and Sector Area
- > Defining a Right Triangle
- Recall of Pythagorean Theorem
- Special Right Triangles

Converting Angle Units Instead of using decimals of a degree, the remaining parts are often written as minutes or even seconds. This is similar to problems where we would change one unit to a mixed measurement: ex: 3.12 ft to 3 ft, 1½ in. To convert, use: 60 minutes (60') = 1 degree (1°) 60 seconds (60'') = 1 minute (1')

Converting Angle Units

- Example: Convert 75°15' to decimal form.
- > Example: Convert 130°50' to decimal form (round to hundredth).

Converting Angle Units Example: Convert to the nearest minute 24.5°. Example: Convert 15¾° to the nearest minute. Example: Convert to the nearest minute 42.36°.

Try Yourself

> Fill in the missing angle measurement

Angle in degrees	Angle in degrees and minutes
(nearest hundredth)	(nearest minute)
20.25°	
33 ½°	
	39°15′
	56°45'
60.2°	
	84°10′

Try Yourself

The sector below has a radius of 3⁵/₈ and angle of 120° and is made of a sheet of steel that weighs 5.0939 lbs/sq ft. Determine the weight of the sector. Also, determine the amount of edging needed for the curved part of the sector.

Special Triangles

First, how could you make this triangle into two right triangles? Next, what can you assume or figure out from this triangle?

Special Triangles

 Using what you figured out in the last triangle, what would be the missing parts of the triangle with B = 60° and a = 3.5 in.

