Measurement (Part 1)

Objectives

- Adding/Subtracting with Measurements
- Multiplying/Dividing with Measurements
- Converting Decimals to Fractional Inches

This material is based on work supported by the National Science Foundation under Grant No.
Northeast DUE-1406857. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Measurement Definitions

- Measurement: a value composed of a standard unit and how many of the unit
, Examples:
$3 \mathrm{in} .=3$ of $1 \mathrm{in} .=3 \times 1 \mathrm{in}$.
$1 / 4 \mathrm{lb}$. $=$ one quarter of one pound $=1 / 4 \times 1 \mathrm{lb}$.

Discussion

- What are the different ways we can measure things? What are the most common units used?

Adding/Subtracting Measurements

- Be sure you are combining like units. Ex: You can not add 2 ft to 3 in .
- Example: $3.2 \mathrm{~cm}+5.298 \mathrm{~cm}+0.18 \mathrm{~cm}$
- Example: $51 / 2 \mathrm{ft}+23 / 4 \mathrm{ft}-2.65 \mathrm{ft}+24 \mathrm{in}$

Adding/Subtracting Measurements

- Example: $6^{\prime \prime} 9^{\prime \prime}+2^{\prime} 6^{\prime \prime}$
- Example: $4^{\prime \prime} 2^{\prime \prime}-1^{\prime \prime} 7^{\prime \prime}$

Adding/Subtracting Measurements

- Example: 1 ' $9 \frac{3}{8}$ " $+4 \frac{9}{16}$ "
, Example: $8{ }^{\prime} 4 \frac{1}{8}{ }^{\prime \prime}-3 \prime 8_{4}^{3}{ }^{\prime \prime}$

Multiplying/Dividing Measurements

- The operation of the problem needs to be done to the unit as well as the numbers attached to the units.
- Example: $2 \mathrm{ft} \times 3 \mathrm{ft}$

Linear Measurement

- For length measurements, there are three types based on the dimensions in the context of the situation. Inches is used below, but this can be applied to any length units.

Linear Length	Area	Volume
One Dimensional	Two Dimensional	Three Dimensional
$\frac{\text { in }}{}$	in	in
in	in^{2} or sq in	in^{3} or cu in

Try Yourself

-1) $3 \mathrm{ft}-9 \mathrm{in}$
-2) $10^{\prime} 83 / 4^{\prime \prime}+26^{\prime} \frac{1}{8}$
-3) $5,7 \frac{1}{2} "-2 \prime 8 \frac{5}{8}$ "

Multiplying/Dividing Measurements

, Example: 4 in $\times 8$ in $\times 3$ in

Multiplying/Dividing Measurements

- Example: $130 \mathrm{mi} \div 2 \mathrm{hr}$
- Example: $15 \mathrm{sq} \mathrm{ft} \div 3 \mathrm{ft}$
- Example: $75 \mathrm{lb} \div 6.55$ sq in.

Try Yourself

, 1) $7 \mathrm{mph} \times 4 \mathrm{hr}$
-2) $200 \mathrm{mi} \div 55 \mathrm{mph}$

Converting Decimals to Fractional Inches

- There is an efficient way to determine what fractional $16^{\text {th }}, 32^{\text {nd }}$, or $64^{\text {th }}$ a decimal is closest to, especially when you cannot look at the decimal and know right away:

1. Multiply the numerator by the desired denominator and round to the nearest whole number.
2. Put the rounded number over the desired denominator.
3. If possible, reduce.

Try Yourself

, Examples: What are the following decimals to the nearest 32 nds?

1) 0.287
2) 3.065
3) 0.738

Converting Decimals to Fractional
Inches - Error
, By using a fractional measurement, we are creating a certain
amount of error by not using the exact decimal dimension, the
difference between the decimal given and fraction determined.
, Example: Express $0.76^{\prime \prime}$ in fraction form to the nearest $16^{\text {th }}$ of an
inch. Find the error to the nearest ten-thousandth.

Try Yourself

, Example: Express each of the dimensions in fraction form to the nearest $16^{\text {th }}$ of an inch. Find the error to the nearest thousandth for each side.

Blueprint Measurement	Nearest $16^{\text {th }}$ of an inch	Error
$2.381^{\prime \prime}$		
$5.460^{\prime \prime}$		
$0.245^{\prime \prime}$		

