

Angle Definitions

- Angle - how we measure the amount of the opening between the two lines

The basic unit we attach to an angle is degrees (${ }^{\circ}$)
We also use minutes (') and seconds (") to break down degrees more accurately in Trigonometry
Vertex - where two lines meet and form an angle

- Basic Angles

A full circle is \qquad $\stackrel{\circ}{\circ}$.
A straight line is
\qquad
A perfect vertical line and horizontal line makes a \qquad ${ }^{\circ}$ angle.

- Types of Angles

Acute - the angle is between 0° and 90°
Right - the angle is exactly 90°
Obtuse - the angle is between 90° and 180°
Angles of a triangle - add up to \qquad ${ }^{\circ}$

Angle Relationships

, Vertical angles - the opposite angles of two intersecting lines
The two vertical angles formed are always equal
, Example: Find angles m, n, and p

Objectives

Angle Definitions
Polygons
Calculating Perimeter and Area for Quadrilaterals
Pythagorean Theorem
Area of a Triangle
Height Known

- Isosceles Triangle

Equilateral Triangle
Regular Hexagons
Area of Irregular Polygons
Circles - Circumference and Area
Irregular Shapes with Circles
Length of Stock

Angle Definitions

- Example: Find the missing angle:

Example: A bolt hole circle has eight circles. How far apart are the holes, in degrees?

Angle Relationships

, Parallel Lines - two lines that never cross

- Transversal - a line that crosses two parallel lines The corresponding angles formed are equal
, Example: Fill in all missing angles

Try Yourself

, Find the missing angles
1)

2) The vertical and horizontal lines are perpendicular

Try Yourself

- Example: Find the perimeter (in ft and in) and area (in square feet).

Polygons

Polygon - a shape with at least three straight sides
The different things that we calculate for two-dimensional polygons are

Perimeter

Area

What does it mean to calculate each of these? Give examples of when you would do each.

- See the formula sheet to look at the different shapes we will calculate Perimeter, Area, Surface Area, and Volume for.

Rectangles

* The rectangle above is a 10 gauge, low carbon commercial steel sheet. Go to
http://www.ryerson.com/en/Products/Stock-List to
determine that the weight per square foot in lbs is 5.625 $\mathrm{lbs} / \mathrm{sq} \mathrm{ft}$ and then determine the weight of the sheet.

Try Yourself

- Example: You want to pave your driveway that is currently gravel. One company tells you that they charge $\$ 45 /$ square yard. Your driveway is sixty feet long and fifteen feet wide. What would the cost be?

Trapezoid

, Example: Find the perimeter and area

Pythagorean Theorem

- Used to find the third side of a right triangle if we know two of the sides.
- Notice that c must be the hypotenuse.
, Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
, Example: Find the missing side

Try Yourself

, Example: Find the missing side

Try Yourself

- The following cross brace needs to be made. Find the total length of bar needed to make this piece.

Area of a Triangle - Equilateral Triangle

, Equilateral Triangle - all three sides are equal
, Example: Find the perimeter and area

Try Yourself

- The supports under a bridge are shown below. If the sheets weigh $14.8 \mathrm{lb} / \mathrm{sq} \mathrm{ft}$, how much does each piece weigh?

Area of a Triangle - Isosceles Triangle

- Isosceles Triangle - two sides are equal
- Example: Find the perimeter and area

Try Yourself

Find the total length of weld needed to go around the sheet of metal. Also calculate the area

20 mm

Regular Hexagons

- Regular Hexagon - a polygon with six equal sides a is the length of a side
d is the distance from opposite corners
f is the shortest distance across opposite sides

Regular Hexagons

- Example: Find the side of the hexagon and find the area

Try Yourself

Example: You are asked to make a road sign in the shape of a regular hexagon. They should have a maximum width of 2 ft 3 in . Find the length of each side and find the area of the sign.

Irregular Polygons

- Find the area of the sheet of metal.

Irregular Polygons

- Find the area of the shaded part:

Compare the two different strategies used to calculate the area of these shapes.

Application Problem

, The following figure needs to be cut from an originally rectangular sheet of metal that is $16 \frac{5}{16}$ " by $8 \frac{9}{16}{ }^{\prime}$. Determine the original area and the area once the triangular parts have been cut and removed.

Try Yourself

, Determine the perimeter and area of the following sheet of metal in order to determine costs of materials related to the job.

Circles

Find the π button on your calculator. What is π ?

Examples: Convert to the decimal form to the nearest thousandth:

。 $\pi=$
$2 \pi=$
$0.57 \pi=$

- Circles: r is the radius, d is the diameter

Area: $A=\pi r^{2}$
Circumference (Perimeter): $C=\pi d=2 \pi r$

Try Yourself

- Find the area and circumference of the circle:

Try Yourself

, Find the area of the shaded figure: (\varnothing is diameter)

Try Yourself

- Find the length of stock in the figure below, including the vertical and horizontal parts at the ends:

2.00

Length of Stock

- Measure from the middle of the piece. This gives the mean(average) diameter or mean radius.
- Example: Find the original length of stock needed to have bend a $1 / 2^{\prime \prime}$ diameter round stock to have an inner diameter of $6^{\prime \prime}$ and bent 180°.

