

Adding Fractions

- Does this make sense? $\frac{1}{4} + \frac{3}{8} = \frac{4}{12} = \frac{1}{3}$
- Represent the problem with a picture. What do we need to do to add these two fractions?

Adding/Subtracting Fractions (Same Denominator) • Example: $\frac{3}{4} - \frac{1}{4}$

- Example: $\frac{5}{8} + \frac{7}{8}$
- Try Yourself: $\frac{7}{32} + \frac{9}{32} + \frac{5}{32}$
- Try Yourself: $\frac{15}{16} \frac{9}{16}$

Common Denominators

- As discussed before, in order to add/subtract fractions we need a common denominator (same number on the bottoms of the fractions).
- > To do this we are looking for a number that each of the denominators goes into.
- There can be many common denominators, but if we find the least common denominator (LCD) we can work with smaller numbers and our calculations will be easier.

Common Denominators

 What are the common denominators for the following sets of denominators?
8, 32

Adding/Subtracting Fractions (Different Denominators)

• Example: $\frac{3}{4} + \frac{5}{6}$

1. What is the common denominator:

• 2. What is $\frac{3}{4}$ written with the com. den.:

What is $\frac{5}{6}$ written with the com. den.:

 3. Rewrite the problem with the common denominators and add:

Application Problem

• A part is supposed to have a length of $\frac{5}{8}$ " once machined. If the tolerance is $\pm \frac{1}{16}$ ", what are the shortest and longest tolerable lengths they could be?

Try Yourself

→ 3) A washer has an outer diameter of $\frac{7}{8}$ ". The wall thickness of the washer is $\frac{3}{32}$ ". What is the inner diameter?

Adding Mixed Numbers

- To add mixed numbers, you can always changed the mixed numbers to improper fractions and add as previously shown
- It's often easier to add the whole numbers, add the proper fractions and change any improper fraction to a mixed number and combine.
- Example: $3\frac{1}{2} + 2\frac{3}{4}$

Application Problem

• Three parts with lengths of $2\frac{1}{8}$ ", $4\frac{3}{16}$ ", and $\frac{3}{4}$ " are lined up and welded together. What is the total length if $\frac{1}{16}$ " length should be added for the weld between each part?

Differences between multiplying and adding fractions

Compare the two problems: What do each look like with a picture before solving?

Order of Operations and Fractions • Recall: What are the steps to the order of operations? • Example: $\frac{3}{4}\left(\frac{5}{8} - \frac{3}{16}\right) - \frac{7}{32}$

Application Problem

• The following sizes of piping are needed to be cut. What is the total needed: five pieces of $2\frac{3}{4}$ ", three pieces of $1\frac{5}{8}$ ", and eight pieces of $6\frac{1}{2}$ ".

Try Yourself

Try Yourself

> 2)You start with a 60" piece of round stock and cut four pieces of $4\frac{3}{4}$ ". For each piece cut, $\frac{1}{16}$ " is lost due to cutting. How much of the original piece of round stock is leftover?