Name \qquad

In this activity you will calculate the length of each part based on the weight.

1. Weigh each part and record the weight below.
2. Use the volume formula given to calculate what the length should be. Record your answer in decimal form. Then convert to the nearest $16^{\text {th }}$ of an inch. (Hint: Think about what your units used in the formula should be. Use that the density of aluminum is $0.098 \mathrm{lb} / \mathrm{cu}$ in which means $0.098 \mathrm{lb}=1 \mathrm{cu} \mathrm{in})$.
3. Use a ruler to verify your length.

Volume of a cylinder: $V=\pi r^{2} l$

Part	Diameter	1.Weight	2. Calculated Length (Three decimal places)	2. Calculated Length (To the nearest $16^{\text {th }}$)	3. Measured Length (To the nearest $16^{\text {th }}$)
A	$1^{\prime \prime}$				
B	$\frac{1}{2} "$				

Volume of a rectangular solid: $V=l w h$

Part	width	height	1.Weight	2. Calculated Length (Three decimal places)	2. Calculated Length (To the nearest $16^{\text {th }}$)	3.Measured Length (To the nearest $16^{\text {th }}$)
A	$\frac{3}{8}$	$\frac{3}{8 \prime \prime}$				
B	$\frac{1}{2}{ }^{\prime \prime}$	$\frac{3}{4}$				

This material is based on work supported by the National Science Foundation under Grant No. DUE-1406857. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

